Here are some complex conjugate properties and identities that are useful to know for complex numbers \(z\) and \(w\).
Complex conjugation is distributive over addition, subtraction, multiplication and division. $$ \begin{align*}
\overline{z+w} &= \overline{z} + \overline{w} \\
\overline{z-w} &= \overline{z}-\overline{w} \\
\overline{zw} &= \overline{z} \, \overline{w} \\
\overline{\left( \frac{z}{w} \right)} &= \frac{\overline{z}}{\overline{w}}, \text{ if $w\ne0$.}
\end{align*} $$
We can relate conjugation with the real part and the imaginary part. $$\begin{align*} z + \overline{z} &= 2\, \text{Re}(z) \\ z-\overline{z} &= 2i \,\text{Im}(z). \end{align*}$$
We have an identity for powers of \(z\). $$\overline{z^n} = (\overline{z})^n \text{, for integer }n.$$
Lastly, the conjugate of a conjugate of a complex number \(z\) is \(z\). $$\overline{\overline{z}} = z.$$
Let’s prove a few of these.
Theorem. For complex numbers \(z\) and \(w\), we have \( z + \overline{z} = 2\, \text{Re}(z) \).
Proof. Let \(z = x+yi\), where \(x\) and \(y\) are real numbrs. Then $$
z + \overline{z} = x+yi + x-yi = 2x = 2\text{Re}(z).
$$
The next one is requires a bit more working, but relies on multiplying the top and the bottom of the fraction by the conjugate of the denominator.
Theorem. For complex numbers \(z\) and \(w\), we have $$\overline{\left( \frac{z}{w} \right)} = \frac{\overline{z}}{\overline{w}}.$$
Proof. Let \(z = a + bi\) and \(w = c+di\). Then $$\begin{align*}
\overline{\left( \frac{z}{w} \right)} &= \overline{\left( \frac{a+bi}{c+di} \right)} \\
&= \overline{\frac{a+bi}{c+di} \times \frac{c-di}{c-di}} \\
&= \overline{\left( \frac{ac + bd + (bc-ad)i}{c^2 + d^2} \right)} \\
&= \frac{ac + bd-(bc-ad)i}{c^2 + d^2}. \end{align*}$$
Theorem. For complex number \(z\), we have \(\overline{z^n} = (\overline{z})^n\).
Proof. Continually apply the identity \( \overline{zw} = \overline{z} \, \overline{w} \). That is, we have $$ \begin{align*} \overline{z^n} &= \overline{z^{n-1} \times z} \\
&= \overline{z^{n-1}} \times \overline{z} \\
&= \overline{z^{n-2} \times z} \times \overline{z} \\
&= \overline{z^{n-2}} \times \overline{z} \times \overline{z} \\
&= \dots = \overline{z}^n.\end{align*}$$
Problems
- Prove the following for any complex \(z\) and \(w\).
- \(\overline{z+w} = \overline{z} + \overline{w}\)
- \(\overline{z-w} = \overline{z}-\overline{w}\)
- \(\overline{zw} = \overline{z} \, \overline{w}\)
- \(z-\overline{z} = 2i \,\text{Im}(z)\)
- \(\overline{\overline{z}} = z\)